
A Low Cost Antialiased Space Filled Voxelization Of Polygonal Objects

Sébastien Thon, Gilles Gesquière, Romain Raffin
LSIS Laboratory

Marseille, University of Provence, France
{Sebastien.Thon, Gilles.Gesquiere, Romain.Raffin}@up.univ-mrs.fr

Abstract
In a virtual sculpting environment, we manipulate objects as a set
of volume elements (voxels). In order to start the sculpture
process from a polygonal object, we have to discretize this object
as a set of voxels. This step is called voxelization. Several
voxelization methods have already been proposed, but none
matches all of our criteria.
In this paper, we propose a practical approach that handles these
criteria, based on an optimized ray casting. The method provides
a voxelization of the inner space of a polygonal object, and not
only of its surface. It is designed to work with closed objects
which may contain holes or tunnels. Even if our goal is not real
time conversion, it is fast enough to provide voxelization of
objects made of several thousands of triangles within few
seconds. As voxelization is a 3D sampling process, it entails
aliasing problems. Our method allows a reduction of aliasing by
using a low cost oversampling in order to compute grey scale
values for the voxels. Moreover our method has a very low cost in
memory and allows unlimited voxelization size (but by disk size),
even for low memory computers. Furthermore, the method can be
used on a personal computer without specific graphics hardware.
Keywords: Voxelization, antialiasing, ray-casting, volume data,
polygonal meshes, virtual sculpting.

1. INTRODUCTION

Numerous applications using three dimensional objects
based on voxelization are found in the context of medical
imaging, physical simulation or terrain visualization. In the
context of virtual sculpting, we manipulate such objects
[GH91][FCG00]. In our sculpture metaphor based on voxels, we
can add, delete or modify the initial volume with tools created
with previously made objects. As artists may want to import
different objects described with triangular meshes, we need to
transform these polygonal objects in a spatial enumeration
[CK95], [J96], [FL00]. For our sculpture application, it is
important to obtain space filled voxelization, and not only a
discretization of the object surface. Furthermore, holes or tunnels
must be taken into account [KC93].

However this discrete representation suffers from a blocky
appearance due to the fact that only cube faces are displayed. In
the context of this paper, we only discuss the voxelization
process, and not the visualization of the resulting voxel set.
Information on visualization can be found in [S96], [THBP90]
and [CKBS90]. Among these methods, the use of gray scale
levels associated to the voxels permits to reduce this blocky
appearance. As our application provides such gray scale data it
could be used by such visualization methods.

With our method, fast results are achieved for meshes made
of several thousands of triangular polygons. We will see that the

memory cost is very low. Furthermore, the method can be used on
a personal computer without specific graphics hardware.

In this paper, section 2 details the current methods for
producing voxelized objects. Section 3 will demonstrate our new
method for producing space filled voxelization in gray scaled
levels. The process is demonstrated to be effective from the
viewpoints of computational time, memory use, and accuracy of
representation. Results are exposed in section 4.

2. BACKGROUND

There exist several ways to perform object voxelization, by using
object topology (point, curve, surface, or volume), geometry
(implicit expression, Brep, CSG, parametric…) or graphics
hardware. These methods have different goals like real time,
volume analysis, accuracy or robustness.

Voxelization methods for parametric surface [K87] or implicitly
defined objects [SC97] have been proposed. However, we focus
on voxelization of polygonal objects.

[J96] discuss an efficient method based on the computation of
distance from voxels to surface. It allows a smooth representation
of the object with normal calculation. Jones used distance fields to
voxelize objects [JS00]. However, the drawback of this distance
based approach is its relative slowness due to the distance
computations. As we don’t make use of distance information in
our application, this technique doesn’t satisfy our needs.

Using a propagation of filled cells, starting from an inside one,
[HW02] propose to voxelize objects closed or not, by the
construction of an octree representation of the scene. As the
robustness of cells classification can be inadequate, we prefer to
restrict to closed objects. As the purpose of this method is to take
into account very general meshes, with problems such as cracks
or overlapping geometry, it is very slow.
Hardware accelerated solutions using graphics hardware have also
been studied. In [FC00], clipping planes are used to display slices
of equal z thickness of a 3D object to the frame buffer. Colored
pixels read slice after slice from the frame buffer are used to
reconstruct a 3D matrix of voxels. However, some problems can
occur, such as holes or missed fine objects.
[KPT99] reconstruct a 3D set of voxels by rendering a polygonal
object onto three z-buffer. However, this method can only be used
to voxelize the surface of the object, and not its inner space.
Moreover, some concavities cannot be detected.

Visualization of a voxelized volume often provides a blocky
aspect to objects. Sculpting environment must provide various
visualizations, for example rough but fast representation during
the interactive step of sculpting, and precise but perhaps slower
representation when the artist releases his tool. A first way to

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

ensure a smooth object surface is to use an operation that will
create a new polygonal object, such as marching cubes [LC87].
This would be done each time the object is modified. As in
[FPRJ00], we can use a distance field with trilinear operations on
the values stored in voxels (see also in [J00]). These methods lead
to a smooth object (or visually smooth) but implies global
computations on the object.

In the framework of our sculpture application, we prefer gray-
levels based methods such as [S94] or [SK98], as the new method
presented in this paper allows the computation of gray scale per
voxel. Such methods enable smooth visualization of surfaces by
local computation of normals using voxels vicinity. However,
visualization issues will not be tackled in this paper.

Among the presented methods, none matches all of our criteria.
Indeed, we need a method that discretizes the inner space of a
closed polygonal mesh as a set of voxels, and not only its surface.
Cavities inside the objects must be detected. Aliasing problems
must be tackled. Fast computation are also needed (although not
in real time), with low memory usage. Furthermore, the method
must be usable on a personal computer without specific graphics
hardware.

In the following, we will propose a new method that handles all
these criteria.

3. OUR VOXELIZATION METHOD

3.1 Presentation
Our method allows to compute an uniform voxelization of a 3D
polygonal object. It is based on an optimized raycasting through
the faces of the polygonal object, in order to determine for each
voxel if it lies inside or outside the object. This is done in two
steps, first a space partitioning of the object faces (section 3.2) in
order to speed up the second step, and then the voxelization by
raycasting trough the space partitioned faces (section 3.3).

3.2 Space partitioning
As we will need to compute in a second step (section 3.3) the
intersections between rays and the faces of a polygonal object, we
first partition the space in order to speed up the computations. We
compute the bounding box of the polygonal object, and we
partition the face of the bounding box that faces the xy plane by
using a quadtree. Each node of the quadtree corresponds to an
axis aligned box. These boxes have a depth that is equal to the
depth of the object bounding box (Figure 1). Each leaf of the
quadtree contains a list of the object faces that intersect the
corresponding box. We subdivide the polygonal object bounding
box by using this quadtree of boxes as long as a box contains a
number of faces greater than a user defined threshold or until a
user defined tree depth is reached.

Figure 1: Partitioning of a polygonal object bounding box with a

quadtree of boxes.
3.3 Voxelization
3.3.1 Presentation
Once the polygonal object space has been partitioned, and all its
faces stored in a quadtree of boxes, we proceed now to the
voxelization step.
We first define a 3D uniform grid embedding the polygonal
object. The user defines the size of the grid as well as the number
of voxels along the three axes. These values are used in a
raycasting step, in order to compute the origin of each ray that is
cast through the object (section 3.3.2).
Along each ray, for each traversed voxel, we determine if the
voxel is inside or outside the object (section 3.3.3), and thus we
give to the voxel a value indicating if it is filled or empty.
As this voxelization step is a 3D discretization of a polygonal
object, it entails aliasing problems (missing details, disconnected
parts, etc.). But we’ll propose in section 3.3.4 an antialiasing
technique by computing for each voxel a value corresponding to
the ratio of the voxel volume that is inside the polygonal object.

3.3.2 Optimized raycasting
Raycasting is the core of our method. We cast a ray parallel to z
positive axis from the center of each cell of the side of the 3D
uniform grid facing xy plane (Figure 2). Thus, if we have a 3D
grid composed of n x m x p cells, we only cast n x m rays (we will
see in section 3.3.4 that we can cast more rays for antialiasing).

Figure 2: Rays are cast along z axis, from centers of cells of one

side of the 3D grid (here, 8x8x8 grid as an example)

Says (xo,yo,zo) the origin of a cast ray. We first determine the box
corresponding to a leaf of the quadtree computed in section 3.2
that will be traversed by the ray (Figure 3), by looking in 2D

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

recursively in the quadtree for the box that contains the (xo,yo)
point.

Figure 3: Choice in 2D of the box in the quadtree that contains
the origin of a cast ray (=center of a uniform grid cell).

Then, we test the intersections between the ray and all the faces
contained into the box. For each intersection point found, its z
coordinate value is added in a linked list of floats. The linked list
is sorted by increasing value of z. This linked list is emptied
before casting a new ray.
Thus, we process the 3D grid in 2D cell by cell along the xy plane
to cast a ray along z axis, and for each ray we compute a sorted
linked list of z components of the intersection points with the
object faces. The next step is to determine, for each voxel of the
3D grid traversed by the ray along z axis, if it lies inside or
outside the object, in order to give it a value “inside” or “outside”.

3.3.3 Inside/outside determination
In order to voxelize the polygonal object, we have to determine
for each voxel traversed by the same ray if this voxel is inside or
outside the object.
We use the paradigm of the determination of a point in a 2D
polygon. In order to test whether a point is contained in a
polygon, one has to count the number of times a ray starting at the
point intersects an edge of the polygon. If this number is odd, the
point is inside (Figure 4).

Figure 4: 2D test of a point in a polygon.

We use the same paradigm in a 3D context: in order to test
whether a point is contained in a polyhedron, we count the
number of times a ray starting at the point intersects a face of the
polyhedron. If this number is odd, the point is inside.
But in order to speed up computation, we don’t cast a ray from
each voxel, because it would be far too expensive. Instead, we
only cast one ray for an entire row of voxels. Thus, this is only a
O(n2) complexity instead of O(n3), if we consider a cubic matrix
of n x n x n voxels.

For each voxel traversed by the same ray along z axis, we
compare its z center component value with the z values of the
same linked list. As the values are sorted by increasing values in
the list, the search is very fast. We count the number of values in
the list that are greater than the z of the center. If this number is
odd, then the center of the voxel is inside the object (Figure 5).

Figure 5: Test if the center of the voxel is inside the polyhedral
object by counting the number of intersection points having a
greater z in the linked list associated to the traversal ray. Here,

there is an odd number of intersections (3), then the center of the
voxel is inside.

Thus, this method allows to fill the space inside the resulting
voxelized object, by marking all the inside voxels as filled, and
not only the voxels on the surface (Figure 6a). Moreover, holes in
the object volume can be taken into account, contrarily to
[KPT99] (Figure 6b).

(a) (b)

Figure 6: With our voxelization method, inside voxels are filled
(a: cut view of a vertebrae), and holes are taken into account (b:

cut view of the cavity of a hollow sphere)

However it is important to note that we don’t allocate memory for
a 3D matrix corresponding to all the voxels. We don’t store in
memory all the voxels values that we compute. On the contrary,
we write on the fly each computed voxel value in a file. Thus, our
method requires very little memory space. As a consequence, this
“direct to disk” technique allows the computation of very big
voxelization, independently of the computer amount of memory.
The only limit is disk size.

3.3.4 Antialiasing
Voxelization of a polygonal object is a 3D sampling process, and
is consequently prone to aliasing problems such as missing details

z
x

(xo,yo)

y

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

or disconnected parts. Our method allows a reduction of aliasing
by computing either a simple binary inside/outside value for each
voxel, or a value corresponding to the amount of voxel volume
that is inside the polygonal object. This value is obtained by
oversampling each voxel : instead of casting only one ray through
a row of voxels, we cast several rays. This oversampling can be
uniform (Figure 7) or stochastic (Figure 8).

(a) (b)
Figure 7: Uniform 2x2x2 oversampling of 4 rays trough a voxel,
with two tested points along each ray. Front (a) and side view of

the voxel (b).

(a) (b)
Figure 8: Stochastic 2x2x2 oversampling of 4 rays trough a

voxel, with two tested points along each ray. Front (a) and side
view of the voxel (b).

For each ray, we compute a linked list of intersection points with
the faces in the quadtree. Then, for each voxel in the row
traversed by these rays, we compute a value between “empty” and
“filled”. This value is obtained as follows: for each ray traversing
the voxel, we consider several points on the ray and inside the
voxel (uniformly along the ray in the case of uniform sampling, or
at random position along the ray in the case of stochastic
sampling). For each point, we test if the point is inside or outside
the polygonal object like in section 3.3.3. Thus, if we oversample
each voxel with n rays, and if we test m points along each of these
rays, then we evaluate the inside/outside test for n x m points for
each voxel. We obtain ni points inside and no points outside, with
ni + no = n.m. The value given to the voxel is a byte between 0
(totally empty) and 255 (totally filled) computed by:

255.
.mn
nvalue i=

As a result, we obtain less aliased voxelizations (Figure 9). The
results presented on Figure 10b exhibit gray levels corresponding
to the state of the voxels. The darker the voxel, the less matter it
contains. Note that our goal is not realistic rendering. In order to
use efficiently these gray levels for rendering, techniques such as
[S96] should be used.

(a) (b)

Figure 9: Binary 1283 voxelization (a) and antialiased greyscale
voxelization (uniform 4x4x4 oversampling) (b).

This antialiasing technique can also be used in order to provide
binary voxelization by setting a threshold on the computed
oversampled values. If the value if greater than the threshold, then
we consider that the voxel is inside, else it is outside. Thus, it
allows to reduce the loss of details smaller than the sampling
frequency (Figure 10).

(a) (b)

(c) (d)

Figure 10: Polygonal model (a), binary 1283 voxelization without
antialiasing (b), uniform 2x2x2 oversampling (c), uniform 4x4x4

oversampling (d).

Computation times for antialiasing during voxelization step are
presented in Table 1 for Athena object composed of 91016 faces.

 Without 2x2x2 3x3x3 4x4x4

643 0.016 0.11 0.266 0.515

1283 0.094 0.656 1.625 3.109

2563 0.703 4.235 11.094 21.203

5123 5.266 30.078 88.141 168.547

Table 1. Antialiasing times (in sec.) for the Athena object.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

3.3.5 Algorithm
The voxelization process can be sum up as the following
algorithm:

OPEN file FOR OUTPUT

WRITE header TO file

origin = min point of object bounding box

delta = size of a voxel

dim = voxels number along an axis (ex:256)

FOR y=0 TO dim DO

 FOR x=0 TO dim DO

 CLEAR Zlist

 // Starting point of the ray is the center

 // of the (x,y) cell

 pos.x = origin.x + (x+0.5)*delta

 pos.y = origin.y + (y+0.5)*delta

 pos.z = origin.z

 // We compute the intersections between the

 // ray and the faces in the quadtree of boxes.

 // z component of intersection points are

 // stored in the sorted linked list Zlist

 Zlist = quadtree.ray_intersect(pos)

 // zc = z component of voxel center

 zc = origin.z + delta/2;

 // For each voxel along z at the same (x,y)

 // location, we test if its center is inside

 // or outside the object

 FOR z=0 TO dim DO

 // We look in the linked list Zlist for the

 // number of intersection points along the

 // ray greater than the tested point

 nb_z_sup = Zlist.nb_z_sup(zc)

 // If this number is even, then the tested

 // point is inside the polygonal object

 IF even(nb_z_sup)

 WRITE 1 TO file // inside voxel

 ELSE

 WRITE 0 TO file // outside voxel

 END IF

 zc = zc + delta;

 END FOR

 END FOR

END FOR

CLOSE file

4. RESULTS

All the following results have been obtained on an Intel XEON
2.66 GHz with 512 Mo.

(a) (b)

(c) (d)
Figure 11: Vertebrae. Polygonal model (a) and voxelization at

643 (b), 1283 (c) and 2563 (d) levels.

(a) (b)

(c) (d)

Figure 12: Brain. Polygonal model (a) and voxelization at 643
(b), 1283 (c) and 2563 (d) levels.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

(a) (b)

(c) (d)

Figure 13: Dragon. Polygonal model (a) and voxelization at 643
(b), 1283 (c) and 2563 (d) levels.

Computation times for the preceding examples are presented in
Table 2. The raycasting stage is accelerated by the use of the
quadtree. More precisely, the speed is very dependent on the
quadtree maximal depth, as we can see in Table 3.

 Vertebrae Brain Dragon

Faces 10444 18847 871414

Partition (sec.) 0.125 0.36 7.047

Voxelization : Time (sec.)

643 0.047 0.094 0.75

1283 0.172 0.407 2.922

2563 0.87 1.844 11.578

5123 6.766 9.829 47.89

Table 2: Partition and voxelization times (in sec.) for different
polygonal objects with a maximal quadtree depth of 5.

Quadtree max
depth

4 6 8 10 12

Partition (sec.) 5.578 9.484 12.25 12.297 13.266

Voxelization : Time (sec.)

643 2.922 0.25 0.047 0.046 0.063

1283 11.547 0.875 0.234 0.234 0.219

2563 46.078 3.531 1.031 1.031 1

5123 186.5 15.844 6.125 6.032 6.453

Table 3: Influence of the quadtree maximal depth on the
voxelization time (in sec.), for the Dragon object.

Software using our method as well as voxelized objects are
available on our web page: www.iut-arles.up.univ-
mrs.fr/thon/recherche/GraphiCon2004/

5. DISCUSSION

5.1 Advantages
Our method allows to voxelize a polygonal object by filling its
inner space, and not only its surface as most of the existing
voxelization methods do.
The method is based on an optimized raycasting. Although it is
not designed to achieve real-time, pretty fast results are obtained
as we can see in Table 2. For example, the total computation time
in 2563 mode (partition step plus voxelization step) for the
vertebrae mesh counting 10444 faces is less than 1 second.
Moreover, contrarily to hardware-based methods [FC00] [FL00],
this method can be used on any computer, even if this computer
does not include a video card or if its video card is not powerful.
Furthermore, voxelization of any size can be obtained, whereas
hardware-based methods are limited by frame buffer or z-buffer
maximal dimensions.
As we can see on results presented in Table 3, the speed of the
voxelization step is very dependent on the maximal depth of the
quadtree. As we increase the maximal depth, the partition step
time is increased, but the voxelization step time is dramatically
decreased. However, a compromise has to be found, because if
the quadtree subdivision is too important, then its construction
time during the partition step will be too high and the recursive
search of a box in this tree during the voxelization step will begin
to increase. For the example of the Dragon mesh in Table 3, the
voxelization time decreases until a depth of 10, but starts to
increase for bigger depth values.
If we sum the time of the partition and voxelization steps, then for
the example of the Dragon mesh the best compromise is to use a
maximal quadtree depth of 8 for important voxelizations such as
2563, 5123 of higher.
Our method has a low cost in memory, as we only store in
memory polygonal object data as a quadtree and one linked list of
floats. This is the linked list of z components of intersection
points along a ray. The same list is used for a whole row of z axis
aligned voxels traversed by this ray. Moreover, we don’t store in
memory the entire computed voxels 3D matrix, as we directly
save in a file each voxel value that is computed. Thus, very large
voxelizations can be done, as the only limitation is disk size.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

In order to reduce aliasing problems inherent to the voxelization
process, we allow the possibility to compute for each voxel a
value corresponding to the proportion of its volume inside the
polygonal object, instead of a simple binary “inside/outside”
value.

5.2 Disavantages

As this method is based on raycasting, it is slower than hardware
based techniques. However, even if it cannot be used in a real-
time framework, voxelized objects are obtained within few
seconds.

The polygonal objects to convert must have a closed surface, as
we suppose that if a ray first encounters a face, then it is inside
the object until it hits another face.

The presented method only computes uniform 3D grids of voxels.
However, it could easily be extended to the creation of adaptive
structures, such as an octree, in order to spare memory (disk size
in our case). The subdivision criterion could be the voxel value
computed in section 3.3.4 for antialiasing: if this value is greater
than a given threshold, then the voxel is subdivided in 8 sub-
voxels, and so on, and all these values are stored in an octree.

6. CONCLUSIONS AND FUTURE WORKS

We proposed a voxelization method for polygonal objects based
on an optimized raycasting. This method allows to fill the inner
space of the object with voxels. Aliasing problems inherent to the
sampling process of voxelization are tackled. Even if our
objective is not real-time, the method is fast enough to provide
results within few seconds for polygonal objects made of several
thousands of faces for large voxelizations such as 5123.

As our method is based on a raycasting, it can be easily extended
to the voxelization of other object types than polygonal objects.
Thanks to the object oriented architecture of our software, it only
requires to provide a class defining a new object type, such as for
example implicit surfaces, nurbs or analytic objects (sphere, cone,
etc.), and to provide a method for this class that compute the
intersection between this object and a ray. As long as we can
compute intersection points along a ray, the remainder of the
process is the same as presented in this paper.

As future works, we plan to take into account polygonal objects
that are not correctly closed, with missing faces. We also plan to
compute adaptively the voxels in an octree.

7. ACKNOWLEDGMENTS

The authors would like to thank Eric Remy for his reading of this
paper.

The Vertebrae and Brain models are free models taken from
www.3dcafe.com. The Athena mesh is a free model proposed
by DeEspona at www.deespona.com. The Dragon model has
been taken from the Large Geometric Models Archive at
www.cc.gatech.edu/projects/large_models.

8. REFERENCES

[CKBS90] D. Cohen, A. Kaufman, R. Bakalash, and S. Bergman.
Real time discrete shading. The Visual Computer, 6:16-27, 1990.

[CK95] D. Cohen-Or and A. Kaufman. Fundamentals of Surface
Voxelization. Graphical Models and Image Processing, Volume
57, Issue 6, November 1995, pp. 453-461.
[FCG00] E. Ferley, M.P. Cani, and J.D. Gascuel. Practical
volumetric sculpting. The Visual Computer, 16(8):469–480,
December 2000. A preliminary version of this paper appeared in
Implicit Surfaces’99, Bordeaux, France, sept 1999.
[FC00] S. Fang and H. Chen. Hardware accelerated Voxelisation.
Volume Graphics, Chapter 20, pp. 301– 315. Springer-Verlag,
March 2000.
[FL00] S. Fang and D. Liao. Fast CSG Voxelization by Frame
Buffer Pixel Mapping. ACM/IEEE Volume Visualization and
Graphics Symposium 2000 (Volviz'00), pp. 43-48, Salt Lake City,
UT, 9-10 October 2000.
[FPRJ00] S.F. Frisken, R.N. Perry, A. P. Rockwood, and T.R.
Jones. Adaptively sampled distance fields: A general
representation of shape for computer graphics. Proceedings of
SIGGRAPH 2000, pp. 249–254, July 2000. ISBN 1-58113-208-5.
[GH91] T.A. Galyean and J.F. Hughes. Sculpting: An interactive
volumetric modeling technique. Computer Graphics, 25(4):267–
274, July 1991. Proceedings of SIGGRAPH’91 (Las Vegas,
Nevada, July 1991).
[HW02] D. Haumont and N. Warzée. Complete Polygonal Scene
Voxelization, Journal of Graphics Tools, Volume 7, Number 3,
pp. 27-41, 2002.
[J96] M.W. Jones. The production of volume data from triangular
meshes using voxelisation. Computer Graphics Forum, vol. 15, no
5, pp. 311-318, 1996.
[JS00] M. W. Jones and R. Satherley. Voxelisation: Modelling for
Volume Graphics. In B. Girod, G. Greiner, H. Niemann, H.-P.
Seidel (eds.), Vision, Modeling, and Visualization 2000, IOS
Press, pp. 319-326, ISBN 1-58603-104-X.
[KPT99] E.A. Karabassi, G. Papaioannou, and T. Theoharis. A
fast depth-buffer-based voxelization algorithm. Journal of
Graphics Tools, 4(4):5-10, 1999.
[KC93] A. Kaufman, D. Cohen. Volume Graphics. IEEE
Computer, Vol. 26, No. 7, July 1993, pp. 51-64, Ben Gurion
University, Roni Yagel, The Ohio State University.
[LC87] W. E. Lorensen and H. E. Cline. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm, Computer
Graphics, vol. 21, no. 4, July 1987, pp. 163-169.
[S94] M. Sramek. Gray level voxelisation: a tool for simultaneous
rendering of scanned and analytical data. Proc. the 10th Spring
School on Computer Graphics and its Applications, Bratislava,
Slovak Republic, 1994, pp. 159-168.
[S96] M. Sramek. Visualization of Volumetric Data by Ray
Tracing ISBN 3-85403-112-2, Austrian Computer Society,
Austria 1998.
[SC97] N. Stolte and R. Caubet. Comparison between Different
Rasterization Methods for Implicit Surfaces. In Rae Earnshaw,
John A. Vince and How Jones, editors, Visualization and
Modeling, Chapter 10, pp. 191-201, Academic Press, April 1997.
ISBN 0122277384.
[SK98] M. Sramek, A. Kaufman. Object voxelisation by filtering.
In: Proc. IEEE Symposium on Volume Visualization, Research
Triangle Park, NC, October 1998, pp. 111-118.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

http://www.iut-arles.up.univ-mrs.fr/lxao/private/sculpture/voxelisation/sources/A fast depth-buffer-based voxelization algorithm.pdf
http://www.iut-arles.up.univ-mrs.fr/lxao/private/sculpture/voxelisation/sources/A fast depth-buffer-based voxelization algorithm.pdf
http://www.ocg.or.at/sr112.html
http://www.ocg.or.at/sr112.html
http://nilo.stolte.free.fr/Publications/leeds.pdf
http://nilo.stolte.free.fr/Publications/leeds.pdf

[SK00] M. Sramek and A. Kaufman. vxt: A class library for
object voxelisation. In Volume Graphics, pp. 119–134. Springer,
2000.
[THBP90] U. Tiede, K.H. Höhne, M. Bomans, A. Pommert, M.
Riemer, G. Wiebecke. Investigation of medical 3D-rendering
algorithms. IEEE Computer Graphics Applications 10:2 (1990),
41-53
[WK93] S. W. Wang and A. Kaufman. Volume sampled
voxelization of geometric primitives. In Proc. Visualization 93,
pp. 78– 84. IEEE CS Press, Los Alamitos, Calif., 1993.

About the authors

Sébastien Thon is an associate professor at the Provence
University. He works at the LSIS laboratory. His contact email is
Sebastien.Thon@up.univ-mrs.fr

Gilles Gesquière is an associate professor at the Provence
University. He works at the LSIS laboratory. His contact email is
Gilles.Gesquiere@up.univ-mrs.fr

Romain Raffin is an associate professor at the Provence
University. He works at the LSIS laboratory. His contact email is
Romain.Raffin@up.univ-mrs.fr

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/

	INTRODUCTION
	BACKGROUND
	OUR VOXELIZATION METHOD
	Presentation
	Space partitioning
	Voxelization
	Presentation
	Optimized raycasting
	Inside/outside determination
	Antialiasing
	Algorithm

	RESULTS
	DISCUSSION
	Advantages
	Disavantages

	CONCLUSIONS AND FUTURE WORKS
	ACKNOWLEDGMENTS
	REFERENCES

