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Abstract 
In a virtual sculpting environment, we manipulate objects as a set 
of volume elements (voxels). In order to start the sculpture 
process from a polygonal object, we have to discretize this object 
as a set of voxels. This step is called voxelization. Several 
voxelization methods have already been proposed, but none 
matches all of our criteria. 
In this paper, we propose a practical approach that handles these 
criteria, based on an optimized ray casting. The method provides 
a voxelization of the inner space of a polygonal object, and not 
only of its surface. It is designed to work with closed objects 
which may contain holes or tunnels. Even if our goal is not real 
time conversion, it is fast enough to provide voxelization of 
objects made of several thousands of triangles within few 
seconds. As voxelization is a 3D sampling process, it entails 
aliasing problems. Our method allows a reduction of aliasing by 
using a low cost oversampling in order to compute grey scale 
values for the voxels. Moreover our method has a very low cost in 
memory and allows unlimited voxelization size (but by disk size), 
even for low memory computers. Furthermore, the method can be 
used on a personal computer without specific graphics hardware. 
Keywords: Voxelization, antialiasing, ray-casting, volume data, 
polygonal meshes, virtual sculpting. 

1. INTRODUCTION 

Numerous applications using three dimensional objects 
based on voxelization are found in the context of medical 
imaging, physical simulation or terrain visualization. In the 
context of virtual sculpting, we manipulate such objects 
[GH91][FCG00]. In our sculpture metaphor based on voxels, we 
can add, delete or modify the initial volume with tools created 
with previously made objects. As artists may want to import 
different objects described with triangular meshes, we need to 
transform these polygonal objects in a spatial enumeration 
[CK95], [J96], [FL00]. For our sculpture application, it is 
important to obtain space filled voxelization, and not only a 
discretization of the object surface. Furthermore, holes or tunnels 
must be taken into account [KC93]. 

However this discrete representation suffers from a blocky 
appearance due to the fact that only cube faces are displayed. In 
the context of this paper, we only discuss the voxelization 
process, and not the visualization of the resulting voxel set. 
Information on visualization can be found in [S96], [THBP90] 
and [CKBS90]. Among these methods, the use of gray scale 
levels associated to the voxels permits to reduce this blocky 
appearance. As our application provides such gray scale data it 
could be used by such visualization methods. 

With our method, fast results are achieved for meshes made 
of several thousands of triangular polygons. We will see that the 

memory cost is very low. Furthermore, the method can be used on 
a personal computer without specific graphics hardware. 

In this paper, section 2 details the current methods for 
producing voxelized objects. Section 3 will demonstrate our new 
method for producing space filled voxelization in gray scaled 
levels. The process is demonstrated to be effective from the 
viewpoints of computational time, memory use, and accuracy of 
representation. Results are exposed in section 4. 

2. BACKGROUND 

There exist several ways to perform object voxelization, by using 
object topology (point, curve, surface, or volume), geometry 
(implicit expression, Brep, CSG, parametric…) or graphics 
hardware. These methods have different goals like real time, 
volume analysis, accuracy or robustness. 

Voxelization methods for parametric surface [K87] or implicitly 
defined objects [SC97] have been proposed. However, we focus 
on voxelization of polygonal objects. 

[J96] discuss an efficient method based on the computation of 
distance from voxels to surface. It allows a smooth representation 
of the object with normal calculation. Jones used distance fields to 
voxelize objects [JS00]. However, the drawback of this distance 
based approach is its relative slowness due to the distance 
computations. As we don’t make use of distance information in 
our application, this technique doesn’t satisfy our needs. 

Using a propagation of filled cells, starting from an inside one, 
[HW02] propose to voxelize objects closed or not, by the 
construction of an octree representation of the scene. As the 
robustness of cells classification can be inadequate, we prefer to 
restrict to closed objects. As the purpose of this method is to take 
into account very general meshes, with problems such as cracks 
or overlapping geometry, it is very slow. 
Hardware accelerated solutions using graphics hardware have also 
been studied. In [FC00], clipping planes are used to display slices 
of equal z thickness of a 3D object to the frame buffer. Colored 
pixels read slice after slice from the frame buffer are used to 
reconstruct a 3D matrix of voxels. However, some problems can 
occur, such as holes or missed fine objects. 
[KPT99] reconstruct a 3D set of voxels by rendering a polygonal 
object onto three z-buffer. However, this method can only be used 
to voxelize the surface of the object, and not its inner space. 
Moreover, some concavities cannot be detected. 

Visualization of a voxelized volume often provides a blocky 
aspect to objects. Sculpting environment must provide various 
visualizations, for example rough but fast representation during 
the interactive step of sculpting, and precise but perhaps slower 
representation when the artist releases his tool. A first way to 
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ensure a smooth object surface is to use an operation that will 
create a new polygonal object, such as marching cubes [LC87]. 
This would be done each time the object is modified. As in 
[FPRJ00], we can use a distance field with trilinear operations on 
the values stored in voxels (see also in [J00]). These methods lead 
to a smooth object (or visually smooth) but implies global 
computations on the object. 

In the framework of our sculpture application, we prefer gray-
levels based methods such as [S94] or [SK98], as the new method 
presented in this paper allows the computation of gray scale per 
voxel. Such methods enable smooth visualization of surfaces by 
local computation of normals using voxels vicinity. However, 
visualization issues will not be tackled in this paper. 

Among the presented methods, none matches all of our criteria. 
Indeed, we need a method that discretizes the inner space of a 
closed polygonal mesh as a set of voxels, and not only its surface. 
Cavities inside the objects must be detected. Aliasing problems 
must be tackled. Fast computation are also needed (although not 
in real time), with low memory usage. Furthermore, the method 
must be usable on a personal computer without specific graphics 
hardware. 

In the following, we will propose a new method that handles all 
these criteria. 

3. OUR VOXELIZATION METHOD 

3.1 Presentation 
Our method allows to compute an uniform voxelization of a 3D 
polygonal object. It is based on an optimized raycasting through 
the faces of the polygonal object, in order to determine for each 
voxel if it lies inside or outside the object. This is done in two 
steps, first a space partitioning of the object faces (section 3.2) in 
order to speed up the second step, and then the voxelization by 
raycasting trough the space partitioned faces (section 3.3). 

3.2 Space partitioning 
As we will need to compute in a second step (section 3.3) the 
intersections between rays and the faces of a polygonal object, we 
first partition the space in order to speed up the computations. We 
compute the bounding box of the polygonal object, and we 
partition the face of the bounding box that faces the xy plane by 
using a quadtree. Each node of the quadtree corresponds to an 
axis aligned box. These boxes have a depth that is equal to the 
depth of the object bounding box (Figure 1). Each leaf of the 
quadtree contains a list of the object faces that intersect the 
corresponding box. We subdivide the polygonal object bounding 
box by using this quadtree of boxes as long as a box contains a 
number of faces greater than a user defined threshold or until a 
user defined tree depth is reached. 

 
Figure 1: Partitioning of a polygonal object bounding box with a 

quadtree of boxes. 
3.3 Voxelization 
3.3.1 Presentation 
Once the polygonal object space has been partitioned, and all its 
faces stored in a quadtree of boxes, we proceed now to the 
voxelization step. 
We first define a 3D uniform grid embedding the polygonal 
object. The user defines the size of the grid as well as the number 
of voxels along the three axes. These values are used in a 
raycasting step, in order to compute the origin of each ray that is 
cast through the object (section 3.3.2). 
Along each ray, for each traversed voxel, we determine if the 
voxel is inside or outside the object (section 3.3.3), and thus we 
give to the voxel a value indicating if it is filled or empty. 
As this voxelization step is a 3D discretization of a polygonal 
object, it entails aliasing problems (missing details, disconnected 
parts, etc.). But we’ll propose in section 3.3.4 an antialiasing 
technique by computing for each voxel a value corresponding to 
the ratio of the voxel volume that is inside the polygonal object. 

3.3.2 Optimized raycasting 
Raycasting is the core of our method. We cast a ray parallel to z 
positive axis from the center of each cell of the side of the 3D 
uniform grid facing xy plane (Figure 2). Thus, if we have a 3D 
grid composed of n x m x p cells, we only cast n x m rays (we will 
see in section 3.3.4 that we can cast more rays for antialiasing). 
 

  
Figure 2: Rays are cast along z axis, from centers of cells of one 

side of the 3D grid (here, 8x8x8 grid as an example) 
 
Says (xo,yo,zo) the origin of a cast ray. We first determine the box 
corresponding to a leaf of the quadtree computed in section 3.2 
that will be traversed by the ray (Figure 3), by looking in 2D 
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recursively in the quadtree for the box that contains the (xo,yo) 
point. 
 
 
 
 
 
 
 
 

 
 

Figure 3: Choice in 2D of the box in the quadtree that contains 
the origin of a cast ray (=center of a uniform grid cell). 

 
Then, we test the intersections between the ray and all the faces 
contained into the box. For each intersection point found, its z 
coordinate value is added in a linked list of floats. The linked list 
is sorted by increasing value of z. This linked list is emptied 
before casting a new ray. 
Thus, we process the 3D grid in 2D cell by cell along the xy plane 
to cast a ray along z axis, and for each ray we compute a sorted 
linked list of z components of the intersection points with the 
object faces. The next step is to determine, for each voxel of the 
3D grid traversed by the ray along z axis, if it lies inside or 
outside the object, in order to give it a value “inside” or “outside”. 

3.3.3 Inside/outside determination 
In order to voxelize the polygonal object, we have to determine 
for each voxel traversed by the same ray if this voxel is inside or 
outside the object. 
We use the paradigm of the determination of a point in a 2D 
polygon. In order to test whether a point is contained in a 
polygon, one has to count the number of times a ray starting at the 
point intersects an edge of the polygon. If this number is odd, the 
point is inside (Figure 4). 
 
 
 
 
 

 
Figure 4: 2D test of a point in a polygon. 

 
We use the same paradigm in a 3D context: in order to test 
whether a point is contained in a polyhedron, we count the 
number of times a ray starting at the point intersects a face of the 
polyhedron. If this number is odd, the point is inside. 
But in order to speed up computation, we don’t cast a ray from 
each voxel, because it would be far too expensive. Instead, we 
only cast one ray for an entire row of voxels. Thus, this is only a 
O(n2) complexity instead of O(n3), if we consider a cubic matrix 
of n x n x n voxels. 

For each voxel traversed by the same ray along z axis, we 
compare its z center component value with the z values of the 
same linked list. As the values are sorted by increasing values in 
the list, the search is very fast. We count the number of values in 
the list that are greater than the z of the center. If this number is 
odd, then the center of the voxel is inside the object (Figure 5). 
 
 
 
 
 
 
 
 
 

 
Figure 5: Test if the center of the voxel is inside the polyhedral 
object by counting the number of intersection points having a 
greater z in the linked list associated to the traversal ray. Here, 

there is an odd number of intersections (3), then the center of the 
voxel is inside. 

 
Thus, this method allows to fill the space inside the resulting 
voxelized object, by marking all the inside voxels as filled, and 
not only the voxels on the surface (Figure 6a). Moreover, holes in 
the object volume can be taken into account, contrarily to 
[KPT99] (Figure 6b). 
 

  
(a)   (b) 

Figure 6: With our voxelization method, inside voxels are filled 
(a: cut view of a vertebrae), and holes are taken into account (b: 

cut view of the cavity of a hollow sphere) 
 
However it is important to note that we don’t allocate memory for 
a 3D matrix corresponding to all the voxels. We don’t store in 
memory all the voxels values that we compute. On the contrary, 
we write on the fly each computed voxel value in a file. Thus, our 
method requires very little memory space. As a consequence, this 
“direct to disk” technique allows the computation of very big 
voxelization, independently of the computer amount of memory. 
The only limit is disk size. 

3.3.4 Antialiasing 
Voxelization of a polygonal object is a 3D sampling process, and 
is consequently prone to aliasing problems such as missing details 

z
x 

(xo,yo) 

y 
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or disconnected parts. Our method allows a reduction of aliasing 
by computing either a simple binary inside/outside value for each 
voxel, or a value corresponding to the amount of voxel volume 
that is inside the polygonal object. This value is obtained by 
oversampling each voxel : instead of casting only one ray through 
a row of voxels, we cast several rays. This oversampling can be 
uniform (Figure 7) or stochastic (Figure 8). 
 
 
 
 
 

(a)   (b) 
Figure 7: Uniform 2x2x2 oversampling of 4 rays trough a voxel, 
with two tested points along each ray. Front (a) and side view of 

the voxel (b). 
 
 
 
 
 

(a)   (b) 
Figure 8: Stochastic 2x2x2 oversampling of 4 rays trough a 

voxel, with two tested points along each ray. Front (a) and side 
view of the voxel (b). 

 
For each ray, we compute a linked list of intersection points with 
the faces in the quadtree. Then, for each voxel in the row 
traversed by these rays, we compute a value between “empty” and 
“filled”. This value is obtained as follows: for each ray traversing 
the voxel, we consider several points on the ray and inside the 
voxel (uniformly along the ray in the case of uniform sampling, or 
at random position along the ray in the case of stochastic 
sampling). For each point, we test if the point is inside or outside 
the polygonal object like in section 3.3.3. Thus, if we oversample 
each voxel with n rays, and if we test m points along each of these 
rays, then we evaluate the inside/outside test for n x m points for 
each voxel. We obtain ni points inside and no points outside, with 
ni + no = n.m. The value given to the voxel is a byte between 0 
(totally empty) and 255 (totally filled) computed by: 

255.
.mn
nvalue i=  

As a result, we obtain less aliased voxelizations (Figure 9). The 
results presented on Figure 10b exhibit gray levels corresponding 
to the state of the voxels. The darker the voxel, the less matter it 
contains. Note that our goal is not realistic rendering. In order to 
use efficiently these gray levels for rendering, techniques such as 
[S96] should be used. 
 

  
(a)   (b) 

Figure 9: Binary 1283 voxelization (a) and antialiased greyscale 
voxelization (uniform 4x4x4 oversampling) (b). 

 
This antialiasing technique can also be used in order to provide 
binary voxelization by setting a threshold on the computed 
oversampled values. If the value if greater than the threshold, then 
we consider that the voxel is inside, else it is outside. Thus, it 
allows to reduce the loss of details smaller than the sampling 
frequency (Figure 10). 

  
(a)   (b) 

  
(c)   (d) 

Figure 10: Polygonal model (a), binary 1283 voxelization without 
antialiasing (b), uniform 2x2x2 oversampling (c), uniform 4x4x4 

oversampling (d). 
 
Computation times for antialiasing during voxelization step are 
presented in Table 1 for Athena object composed of 91016 faces. 

 Without 2x2x2 3x3x3 4x4x4 

643 0.016 0.11 0.266 0.515 

1283 0.094 0.656 1.625 3.109 

2563 0.703 4.235 11.094 21.203 

5123 5.266 30.078 88.141 168.547 

Table 1. Antialiasing times (in sec.) for the Athena object.  
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3.3.5 Algorithm 
The voxelization process can be sum up as the following 
algorithm: 
 
OPEN file FOR OUTPUT 

WRITE header TO file 

 

origin = min point of object bounding box 

delta = size of a voxel 

dim = voxels number along an axis (ex:256) 

 

FOR y=0 TO dim DO 

  FOR x=0 TO dim DO 

    CLEAR Zlist 

 

    // Starting point of the ray is the center 

    // of the (x,y) cell 

    pos.x = origin.x + (x+0.5)*delta 

    pos.y = origin.y + (y+0.5)*delta 

    pos.z = origin.z 

 

    // We compute the intersections between the 

    // ray and the faces in the quadtree of boxes. 

    // z component of intersection points are 

    // stored in the sorted linked list Zlist 

    Zlist = quadtree.ray_intersect(pos) 

 

    // zc = z component of voxel center 

    zc = origin.z + delta/2; 

 

    // For each voxel along z at the same (x,y) 

    // location, we test if its center is inside 

    // or outside the object 

    FOR z=0 TO dim DO 

      // We look in the linked list Zlist for the 

      // number of intersection points along the 

      // ray greater than the tested point 

      nb_z_sup = Zlist.nb_z_sup(zc) 

 

      // If this number is even, then the tested 

      // point is inside the polygonal object 

      IF even(nb_z_sup) 

         WRITE 1 TO file    // inside voxel 

      ELSE 

        WRITE 0 TO file     // outside voxel 

      END IF 

      zc = zc + delta; 

    END FOR 

  END FOR 

END FOR 

 

CLOSE file 

4. RESULTS 

All the following results have been obtained on an Intel XEON 
2.66 GHz with 512 Mo. 

  

(a)   (b) 

  

(c)   (d) 
Figure 11: Vertebrae. Polygonal model (a) and voxelization at 

643 (b), 1283 (c) and 2563 (d) levels. 
 

  
(a)   (b) 

  
(c)   (d) 

Figure 12: Brain. Polygonal model (a) and voxelization at 643 
(b), 1283 (c) and 2563 (d) levels. 
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(a)   (b) 

  
(c)   (d) 

Figure 13: Dragon. Polygonal model (a) and voxelization at 643 
(b), 1283 (c) and 2563 (d) levels. 

 

Computation times for the preceding examples are presented in 
Table 2. The raycasting stage is accelerated by the use of the 
quadtree. More precisely, the speed is very dependent on the 
quadtree maximal depth, as we can see in Table 3. 

 

 Vertebrae Brain Dragon 

Faces 10444 18847 871414 

Partition (sec.) 0.125 0.36 7.047 

Voxelization : Time (sec.) 

643 0.047 0.094 0.75 

1283 0.172 0.407 2.922 

2563 0.87 1.844 11.578 

5123 6.766 9.829 47.89 

Table 2: Partition and voxelization times (in sec.) for different 
polygonal objects with a maximal quadtree depth of 5. 

 

 

 

 

 

 

Quadtree max 
depth 

4 6 8 10 12 

Partition (sec.) 5.578 9.484 12.25 12.297 13.266 

Voxelization : Time (sec.) 

643 2.922 0.25 0.047 0.046 0.063 

1283 11.547 0.875 0.234 0.234 0.219 

2563 46.078 3.531 1.031 1.031 1 

5123 186.5 15.844 6.125 6.032 6.453 

Table 3: Influence of the quadtree maximal depth on the 
voxelization time (in sec.), for the Dragon object. 

Software using our method as well as voxelized objects are 
available on our web page: www.iut-arles.up.univ-
mrs.fr/thon/recherche/GraphiCon2004/ 

5. DISCUSSION 

5.1 Advantages 
Our method allows to voxelize a polygonal object by filling its 
inner space, and not only its surface as most of the existing 
voxelization methods do. 
The method is based on an optimized raycasting. Although it is 
not designed to achieve real-time, pretty fast results are obtained 
as we can see in Table 2. For example, the total computation time 
in 2563 mode (partition step plus voxelization step) for the 
vertebrae mesh counting 10444 faces is less than 1 second. 
Moreover, contrarily to hardware-based methods [FC00] [FL00], 
this method can be used on any computer, even if this computer 
does not include a video card or if its video card is not powerful. 
Furthermore, voxelization of any size can be obtained, whereas 
hardware-based methods are limited by frame buffer or z-buffer 
maximal dimensions. 
As we can see on results presented in Table 3, the speed of the 
voxelization step is very dependent on the maximal depth of the 
quadtree. As we increase the maximal depth, the partition step 
time is increased, but the voxelization step time is dramatically 
decreased. However, a compromise has to be found, because if 
the quadtree subdivision is too important, then its construction 
time during the partition step will be too high and the recursive 
search of a box in this tree during the voxelization step will begin 
to increase. For the example of the Dragon mesh in Table 3, the 
voxelization time decreases until a depth of 10, but starts to 
increase for bigger depth values. 
If we sum the time of the partition and voxelization steps, then for 
the example of the Dragon mesh the best compromise is to use a 
maximal quadtree depth of 8 for important voxelizations such as 
2563, 5123 of higher. 
Our method has a low cost in memory, as we only store in 
memory polygonal object data as a quadtree and one linked list of 
floats. This is the linked list of z components of intersection 
points along a ray. The same list is used for a whole row of z axis 
aligned voxels traversed by this ray. Moreover, we don’t store in 
memory the entire computed voxels 3D matrix, as we directly 
save in a file each voxel value that is computed. Thus, very large 
voxelizations can be done, as the only limitation is disk size. 
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In order to reduce aliasing problems inherent to the voxelization 
process, we allow the possibility to compute for each voxel a 
value corresponding to the proportion of its volume inside the 
polygonal object, instead of a simple binary “inside/outside” 
value. 

5.2 Disavantages 

As this method is based on raycasting, it is slower than hardware 
based techniques. However, even if it cannot be used in a real-
time framework, voxelized objects are obtained within few 
seconds. 

The polygonal objects to convert must have a closed surface, as 
we suppose that if a ray first encounters a face, then it is inside 
the object until it hits another face. 

The presented method only computes uniform 3D grids of voxels. 
However, it could easily be extended to the creation of adaptive 
structures, such as an octree, in order to spare memory (disk size 
in our case). The subdivision criterion could be the voxel value 
computed in section 3.3.4 for antialiasing: if this value is greater 
than a given threshold, then the voxel is subdivided in 8 sub-
voxels, and so on, and all these values are stored in an octree. 

6. CONCLUSIONS AND FUTURE WORKS 

We proposed a voxelization method for polygonal objects based 
on an optimized raycasting. This method allows to fill the inner 
space of the object with voxels. Aliasing problems inherent to the 
sampling process of voxelization are tackled. Even if our 
objective is not real-time, the method is fast enough to provide 
results within few seconds for polygonal objects made of several 
thousands of faces for large voxelizations such as 5123. 

As our method is based on a raycasting, it can be easily extended 
to the voxelization of other object types than polygonal objects. 
Thanks to the object oriented architecture of our software, it only 
requires to provide a class defining a new object type, such as for 
example implicit surfaces, nurbs or analytic objects (sphere, cone, 
etc.), and to provide a method for this class that compute the 
intersection between this object and a ray. As long as we can 
compute intersection points along a ray, the remainder of the 
process is the same as presented in this paper. 

As future works, we plan to take into account polygonal objects 
that are not correctly closed, with missing faces. We also plan to 
compute adaptively the voxels in an octree. 
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